2.1 Notes and Examples

Name:

The Derivative and the Tangent Line Problem

Consider two points on a curve, (a, f(a) and (b, f(b)). If you connect them you form a _______ line. The slope of of that secant line is the average rate of f between a and b. As those two locations a and b get closer and closer to each other, the line connecting them starts to look more and more like a

_ line, where is touches f at one place. The slope of **that** line now looks like the rate at a

single moment, or an _____rate.

Definition of a Tangent Line with Slope m

$$m = \lim_{\Delta \to 0} \frac{\Delta y}{\Delta x} =$$

which we also often see as

$$m = \lim_{h \to 0} =$$

If this limit exists, then the line passing through (c, f(c)) with slope m is the **tangent line** to the graph of f at the point (c, f(c)).

1. Find the slope of the graph of f(x) = 2x - 3 at the point (2, 1)

Definition of the Derivative of a Function The **derivative** of f at x = a is given by

$$f'(a) = \left. \frac{dy}{dx} \right|_{x=a} = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h} = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

Other common notations for derivatives include $y' = \frac{d}{dx}[f(x)] = D_x[y]$

Theorem: If it is Differentiable it is _____

Proof: Using the definition of Continuity at a point:

- 1. Is f(a) defined?
- 2. Does the limit exist?
- 3. Does $f(a) = \lim_{x \to a} f(x)$?

Is the converse true? If f is continuous, must it be differentiable?

Counterexample:

St. Francis High School

2. Let f be a function which satisfies $f(2+h) - f(2) = 5h - 3h^2 + 9h^3$ for all real numbers h. Find f'(2).

3. Use the limit definition to find the derivative of f(x):
(a) If f(x) = x² + 2x

(b) If $f(x) = \sqrt{x}$

(c) If $f(x) = x^3$

4. Let
$$y = \frac{2}{t}$$
. Find $\frac{dy}{dt}$.

- 5. Given $\lim_{x\to 5} \frac{f(x) f(5)}{x 5} = 3$, for each of the following select MUST be true, MIGHT be true, or NEVER be true:
 - (a) f'(5) = 3
 - (b) f'(5) = 0
 - (c) f(5) = 3
 - (d) f is continuous at x = 0
 - (e) f is continuous at x = 5
 - (f) $\lim_{x \to 5} f(x) = f(5)$

6. Find $\lim_{x \to 3} \frac{x^2 + 2x - 15}{x - 3}$ *Hint:* does this remind you of 3(a)?

7. Use the limit definition of derivative $\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$, and the theorems $\lim_{h \to 0} \frac{\sin h}{h} = 1$, $\lim_{h \to 0} \frac{1 - \cos h}{h} = 0$ to prove the following:

(a)
$$\frac{d}{dx}[\sin x] = \cos x$$

(b)
$$\frac{d}{dx}[\cos x] = -\sin x$$

AP Style

8. Water is flowing into a tank over a 24 hour period. The amount of water in the tank is modeled by a differentiable function W for $0 \le t \le 24$, where t is measured in hours and W(t) is measured in gallons. Values of W(t) at selected values of time t are shown in the table below.

t (hours)	0	4	8	12	16	20	24
W(t) in (gallons)	150	184	221	257	294	327	357

- (a) Use the data in the table to find W(8). Using appropriate units, explain the meaning of your answer.
- (b) Use the data in the table to find $W^{-1}(257)$. Using appropriate units, explain the meaning of your answer.
- (c) Use the data in the table to find an approximation for W'(15). Show the computations that lead to your answer. Using appropriate units, explain the meaning of your answer.
- (d) Use the data in the table to find the average rate of change of W(t) over the time period $4 \le t \le 20$. Show the computations that lead to your answer.
- (e) For 0 < t < 24, must there be a time t when the tank contains 265 gallons of water? Justify your answer.

(f) A model for the amount of water in the tank is given by $A(t) = \frac{1}{225}(-t^3 + 30t^2 + 1800t + 33750)$ where A(t) is measured in gallons and t is measured in hours. Use your calculator to find A'(15).

Hint: Use MATH 8. Deriv. If you have an TI-83 the order of the parameters are $nDeriv(Y_1, X, 15)$

(g) A model for the amount of water in the tank is given by $A(t) = \frac{1}{225}(-t^3 + 30t^2 + 1800t + 33750)$ where A(t) is measured in gallons and t is measured in hours. Use your calculator to find the average rate of change over the time period $4 \le t \le 20$ hours.

Hint: Recall the average rate of change between x = a and x = b is the slope of the secant line:

$$\frac{rise}{run} = \frac{f(b) - f(a)}{b - a}$$